Chapter 1C ~ Investigating the Cause of the Fish Kill

The end is in sight!

So what do we know so far...

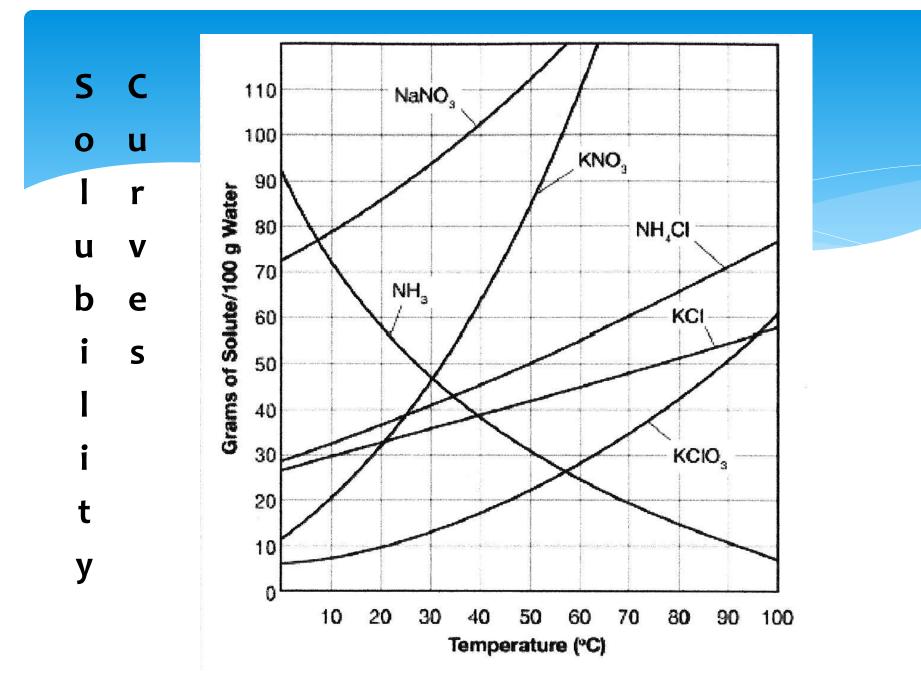
* Ruled out...

- * Toxic substances
- * Suspended particles
- * Next thing to consider...
 - * Dissolved substances

* Review –

* Solutions are homogeneous mixtures * Contain a solute and a solvent gets dissolved does the dissolving

Solubility


 Solubility refers to the amount of solute that can be dissolved in the solvent.

* Given in g solute/100 g of solvent at _____temperature

Solubility curves

 Graphs comparing the temperature of the solvent (water) to the saturated amount of solute in grams/100 g H₂O

 * Can compare more than one solute at the same time

Comparing solubility

* Saturated – maximum amount of solute ~ no more can dissolve at that temperature

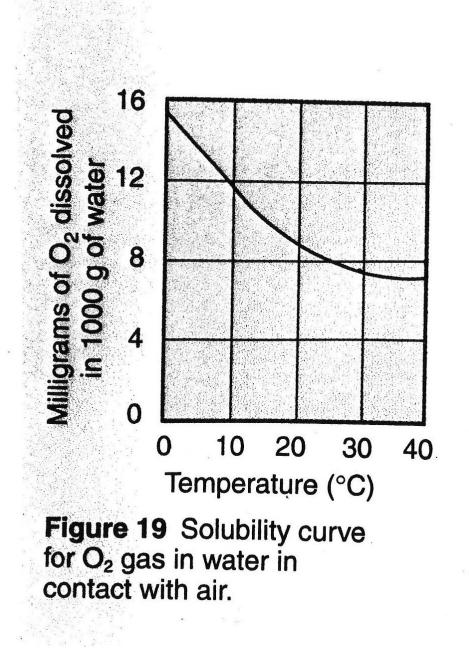
- * Unsaturated less than maximum amount of solute ~ more could dissolve at that temperature
- * Supersaturated more that maximum amount of solute ~ adding more will cause all extra solute to un-dissolve

Using the graph...

* **Saturated** – anywhere on a line

* Unsaturated – anywhere below the line

* Supersaturated – above the line and dissolved

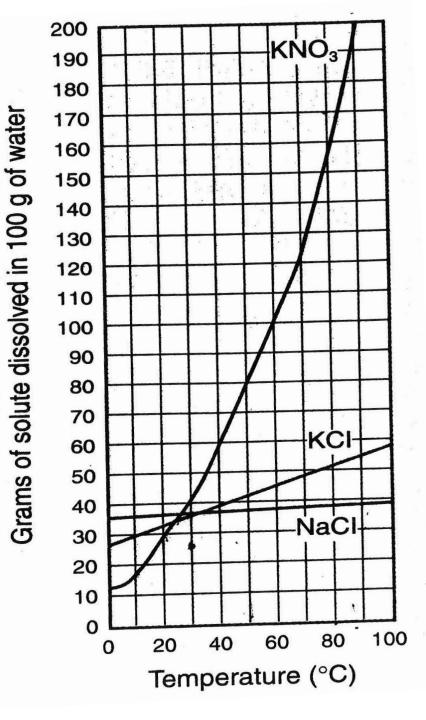

Reading the graphs...

* What happens to the solubility as the temperature increases?

* Does this always happen?

Gas graph

* Shows mg of
O₂ dissolved in
1000 g H₂O
* What is happening
to the amount
as temperature
Increases?


Summary of Solubility and Temperature

* For solid solutes: the higher the temperature the higher the solubility

* For gaseous solutes: the higher the temperature the lower the solubility

Let's try some on our own

Do worksheet in packet... pay attention to 6,7, and 10!

Solution concentration

* Relative terms
* Dilute – not much solute

* Concentrated – large amount of solute

* Both of these are very non-specific terms

Specific terms

- * Solubility (graphs) g/100 g H_2O
- * % mass = (g solute/ 100 g solution) x 100
- * Parts per hundred (pph) g/100 g solution
- * Parts per thousand (ppt) g/1000 g solution
- Parts per million (ppm) g/1,000,000 g solution
- Parts per billion (ppb) g/1,000,000,000 g solution

These are used for small amounts of solute

Oxygen Supply and Demand

- Aquatic Organism (fish, bacteria, frogs, larvae) all need a supply of <u>dissolved oxygen</u> (DO) to survive
 - They cannot get this oxygen from the water molecules though
- * How does O_2 get into the water?
 - * Direct dissolving at the surface of the water
 - * Aeration from agitation of the water
 - * Photosynthesis from aquatic plants and green algae

DO (dissolved oxygen) and the FISH KILL

* Things to consider...

- * How much O_2 will dissolve in H_2O ?
- * How does the temperature of the water affect DO?
- * How much O_2 do fish require?

Competition for O_2

- In all aquatic environments oxygen using organisms will need to compete for available O₂
- * Amount of bacteria will be affected by amount of available "food" for them (wastes put there by mankind, dead/decaying natural material)
- * The more bacteria there are the more they are using oxygen and the competition is ON!
- * Each O₂ using organism has different minimum
 requirement ... ex. Fish require ~ 4 ppm minimum

Temperature and O₂ (a gas) solubility

- Since O₂ is a gas it's solubility is affected by temperature changes that occur in the water
 - * Higher temperatures ...
 - * Cooler temperatures ...
- DO DO
- * What might cause temperature changes in water?

Let's take a look at the FISH KILL!

* Did thermal pollution have anything to do with the fish kill?

* What does Joe Fisker have to do with DO and the fish kill?

* Let's look at some of his data

Let's look at our report card so far...

* From Joe Fisker's data does it appear that thermal pollution had anything to do with the fish kill?

Other things to consider...

* Acid/Base Contamination

- Acids and bases are unique compounds because of their affect on water when they are dissolved in it (they are SOLUTES!)
- * Acids almost ALWAYS start with an H (hydrogen)
- * Bases usually end in –OH (hydroxide ion)

Acids, Bases, and pH

- * pH is a scale used to tell if a solution is an acid or base
- * pH goes from 0 14
 - * Acids pH 0 6.9
 - * Neutral pH 7
 - * Bases pH 7.1 14

Acids, Bases, and THE FISH KILL!

* Most fish can tolerate a pH from 5 – 9

- The pH of the Snake river was measured at the time of the fish kill to range from 6.7 – 6.9
- * Conclusion... pH levels (acid/base content) were NOT responsible for the fish kill

So what else might be dissolved in the water that killed the fish? * lons and lonic compounds * Ions are charged particles *+ charged ions are called CATIONS *- charged ions are called ANIONS * Cations and anions together form a neutral compound called and IONIC **COMPOUND**

Ionic Formulas

- Monoatomic ions contain one type of element (one capital letter) Na⁺¹, O⁻², Mg⁺²
- * Polyatomic ions contain two or more types of elements (two or more capital letters) SO₄⁻²
- Ionic compounds must have a final charge of ZERO
- * To do this we will use a "criss-cross" method

Criss-cross method...

* Write symbols of each ion

- * Put the charge above the symbol and circle the number (not the + and -)
- * Put parenthesis around (polyatomic ions)
- * Reduce charge numbers if possible
- * Criss-cross the circled numbers (not the + and -) and write them as subscripts

* Calcium chloride

* Aluminum nitrate

Now lets reverse the process... Naming ionic compounds

* Use the chart and write the name of each ion as it is written on the sheet in the order that they appear in the formula.

* Ignore the numbers!!!

Covalent compounds dissolved in the water may have killed the fish?

* Covalent compounds are formed when atoms share electrons... there are NO ions

* Some of these compound will dissolve in water

Writing formulas for covalent compounds

* Use Greek prefixes (found on your cheat sheet)

- * Mono=1 Tetra=4 hepta = 7
- Di=2 Penta=5 octa = 8 Tri=3 hexa=6 nona = 9

deca = 10

* Prefix becomes the subscript written next to the element... DO NOT CRISS CROSS!

Naming Covalent compounds

- *The first element only gets a prefix for 2 atoms or higher
- *The second element gets a prefix for all numbers

*The second element's ending gets changed to -ide.