

Waves

- Today scientists recognize light has properties of waves and particles
- Waves: light is electromagnetic radiation and travels in electromagnetic waves.

4 Characteristics wave:

- 1) amplitude - height of the wave. For light it is the brightness
- 2) Wavelength (λ)- distance from crest to crest.
- For light - defines the type of light
- Visible light range - 400-750nm

Properties continu

- 3) Frequency (v)- measures how fast the wave oscillates up and down.
- It is measured in number per second.
- Hertz = 1 cycle per second
- Visible light = 4×10^{14} cycles per second to 7×10^{14} cycles per second
- 4) speed - $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (MEMORIZE)

Shedding more lig

- Short wavelength, high frequency
- Long wavelength, low frequency
- Visible Spectrum ROY

BIV

Longer wavelength
shorter wavelength

Electromagnetic

 spectrum (meters)- 10-11 gamma
- 10-9 x-rays
- 10-8 UV
- 10-7 visible light
- 10-6 infrared
- 10-2 microwave
-1 TV

Table of Contents
Visual Stimulus

Wavelength and frequency

- Wavelength and frequency are inversely related!!

$$
\lambda=\mathbf{c} / v
$$

- Where λ is the wavelength, \mathbf{c} is the speed of light and v is the frequency
- Speed of light = Constant = $3.00 \times 10^{\mathbf{8}} \mathrm{m} / \mathrm{sec}$

Example

- Example: An infrared light has a wavelength of $2.42 \times 10^{-6} \mathrm{~m}$. Calculate the frequency of this light.
- $\quad v=c / \lambda$
- $v=3.0 \times 10^{8} \mathrm{~m} / \mathrm{sec}=$
- $\quad 2.42 \times 10^{-6} \mathrm{~m}$
- = 1.2×10^{14} waves/sec

Wavelength and frequency

- ****Remember λ and v are inverse. Therefore short wavelength = high frequency!!

Atom History

- Atoms solid balls
- P+, \mathbf{n}^{0}, and \mathbf{e}^{-}...nuclear atom
- Solar System atom
- Bohr atom...H only
- Quantum model..explains why elements when heated give off unique wavelengths of light (flame test)
- The amount of energy an object absorbs/emits occurs only in fixed amounts called quanta (quantum)
- Quanta - discrete amount of energy that can be gained or lost by an atom/electron

1905 Einstein's theor

- Einstein proposed that light (because it is energy) consists of quanta of energycalled PHOTONS
- Photon = discrete bit of light energy

Photoelectric effect - Electrons are ejected from the

 surface of a metal when light shines on the metal.- The wavelength and frequency determines the amount of energy.
- The higher the frequency, the more energy per photon.

Energy equation

- Amount of energy of a photon described as

E = energy
$v=$ frequency
$h=$ Planck's constant $=6.626 \times 10^{-34} \mathbf{J}$ s

- Joule = SI unit for energy

Optical Illusions

YOUNG WOMAN OR OLD LADY?

Dual nature of radian

 energy- Photons act BOTH like particles and waves.

Studying atoms using

- All elements emit light when they are energized
- Bright Line Spectra: A spectrum that contains only certain colors, or wavelengths

How are electrons

 arranged in atoms;

- Explanation: Bohr atom: 1911
- postulated that the electrons orbit in rings called energy levels
- energy levels are labeled by a quantum number, n.
- lowest energy level n=1
- Called ground state

How are electrons

 arranged in atoms;- electron absorbs energy; it jumps to a higher level (known as the excited state) $\mathbf{n}=\mathbf{2}$ or $\mathbf{3}^{-}$ or 4
- Bohr model of an atom
- Only worked for Hydrogen

1924 - Louis DeBroorit

- If waves of light can act as a particle, then particles of matter should act like a wave. Found to be true.

DeBroglie

- Matter waves = wavelike behavior of particles.
- Wave nature is inversely related to mass so we don't notice wave nature of large objects.
- However, electrons have a small mass and the wave characteristic is more noticable

Schroedinger's wave equation

- predicted probability of finding an electron in the electron cloud around nucleus.
- Gave us four numbers to describe the "position".

Heisenberg's

Uncertainty Princi

- The position and momentum of a moving object cannot simultaneously be measured and known exactly.
- Cannot know where it is and where its going at the same time.

Quantum mechanical model of an atom

- Treats the electrons as a wave that has quantized its energy
- Describes the probability that electrons will be found in certain locations around the nucleus.

"Locating" an elect - What is your address?

- Four parts of your address...
- State
- City
- Road
- House number

Energy Level (state)

- n=1 ... n=any whole number
- Describes which "ring"
- Indicates
- amount of energy
- size of region
- distance from the nucleus
- Higher the number the higher all of the above will be

Sublevel (city/Town)

- Division of energy level
- Number of sublevels = n
- n=1...1 sublevel
- n=2...2 sublevels etc...
- Sublevels have characteristic shapes
- Four different kinds of sublevels
- $\mathbf{s}, \mathrm{p}, \mathrm{d}, \mathrm{f}$ (each is a different shape)

S sublevel

p sublevel

$2 p_{z}$ Orbital

d sublevel

$$
\begin{aligned}
& \text { o. }
\end{aligned}
$$

f subleve!

Orbital (Street/Road)

- Each sublevel has a certain number of orbital arrangements three dimensionally around the nucleus
- s = 1 sphere
- p = 3 (along the x, y or z axis)
- d = 5
- f = 7

Spin direction (house

- Each electron in an orbital will have a spin
- 2 options clockwise vs. counter clockwise.
- Paulf Exclusion Principle - each orbital in an atom can hold a maximum of 2 electrons and their electrons must have opposite spin.

Let's see if we get 1. How many orbitals are in the 3 p sublevele

2. How many sublevels are in energy level 2?
3. What are the sublevels in energy level $4 ?$
4. How many orbitals, total, exist in all of energy level 3?

Electron configuration

- Aufbau Principle - electrons are added one at a time to the lowest energy position available
- Hund's Rule(s)
- electrons occupy equal energy orbitals so that the maximum number or unpaired electrons result.
- Occupy singly before pairing

Orbital Diagrams
 - Show electrons as \uparrow or

- Follow all rules
- Difference between paired and unpaired electrons
- Paired = 2 electrons in the same orbital
- Unpaired = 1 electron in the orbital

Electron Configuratiot

- Shorter way to show electron "locations"
- Hintst
- Coefficients - energy level
- Sublevels - s,p,d,f
- Superscript - number of electrons (remember limits of each sublevel)

Nobel Gas Shortcut

- Find the closest, lower number nobel gas
- Use symbol for nobel gas in []
- Finish rest of electrons as before
- Ex. Hg (80 electrons)
- [Xe]6s²4f145d ${ }^{10}$

