

Early Thoughts

 Dobereiner – arranged elements with similar chemical properties into triads.

 Newlands- arranged elements by increasing atomic mass. Came up with groups of 8 called them octaves.

Early Thoughts (continued)

 Mendeleev – Arranged elements by atomic mass Moseley - discovered each element had a unique positive charge in the nucleus – Atomic number.

Useful Terms

 Groups or families – the vertical columns on the periodic table

 Periods — The horizontal rows of the periodic table

 Valence Electrons – electrons in the highest principal energy level.

<u>http://www.ptable.com/#Writeup/Wikiped</u> ia

57 La lathanum	58 Ce orium	59 Pr praseodymium 142.9	60 Nd seedymium	61 Pm promethium (141)	62 Sm samarkan	63 Eu europiam	64 Gd sadolinium	65 Tb terbium	66 Dy dyspresiduen	67 Ho bolesium 194.3	68 Er erblum	69 Tm thulian	70 Yb ytterblues
89 Ac actinium (207)	90 Th thorium	91 Pa protactisium 201.0	92 U uranium 234.0	93 Np reptanium (237)	94 Pu ptensium (144)	95 Am americium (141)	96 Cm (M)	97 Bk berkelium (147)	98 Cf californium (211)	99 ES einsteinium (752)	100 Fm fermium (217)	101 Md mendelevium (214)	102 No sobelium (255)

175.0

103 Lr

(242)

Mendeleev Song... get ready!

 <u>http://www.bing.com/videos/search?q=M</u> <u>endeleev+Periodic+Table+Song&FORM=R</u> <u>ESTAB&adlt=strict#view=detail&mid=D6C</u> <u>FCA6D88CA4A1FD322D6CFCA6D88CA4A1</u> <u>FD322</u>

Periodic Law

 Periodic Law – When elements are arranged in order of increasing atomic numbers, their physical and chemical properties show a periodic pattern.

 Periodic Trends-Allow us to see the relationships between the elements and their position on the periodic table

Such as...

 <u>http://www.youtube.com/watch?v=QSZ-</u> <u>3wScePM&feature=player_embedded</u>

Valence Electrons

- Elements in a group have the SAME number of valence electrons
- s and p blocks
 - s blocks have the same number of valence electrons as their group number
 - p blocks have the same number of valence electrons as the ONES place of their group number
- d block and f block (most)
 have two valence electrons

This explains it all...

 Electron shielding – as you look down a group there are more energy levels, this *blocks* the outer electrons from the nucleus

 Nuclear affect – as you look across a period electron configurations have the same highest energy level and more protons. Makes the nuclear attraction greater

Atomic Radius

 Definition - the size from the center of the atom to the outermost electron.

- Trends...
 - Period (across the table) the atomic radius DECREASES

Group- (down the table) the atomic radius INCREASES.

The largest atomic radius is **Fr**The smallest atomic radius is **He**

Ion Size

 Ion- an atom that has gained or lost one or more electrons

All Metals form "+" ions (losers)

- All Nonmetals form "-" ions (gainers)
- Elements in a group form ions of the same charge

• Trend...

- "+" ions are smaller than their corresponding atoms
- "-" ions are larger than their corresponding atoms

Ionization energy

 Ionization Energy-Tells us how much energy is required to remove one electron from an atom. (measured in joules)
 A + energy → A⁺ + e⁻

Trends

• **Period**-Increase across the period.

Group- decreases as you go down the group.

Removing multiple electrons.

- **Example**, Boron [He] $2s^22p^1$
- IE₁ 801 J, IE₂ 2427 J, IE₃ 3660 J, IE₄ 25026 J, IE₅ 32827 J
- Where is the big jump in energy and why?
 - Between 3 and 4
 - You lose all the valence electrons and are removing core electrons after IE₃

Electron Affinity

 Electron Affinity-The energy change that occurs when an electron is acquired by a neutral atom. Most atoms give off energy when an electron is gained

Electron Affinity trends

General

• Metals have a low E.A.

Nonmetals have a high E.A.

 Period - as you move across the period, the electron affinity increases until you reach the halogens.

Group - As you move down a group, the electron affinity decreases.

Electronegativity

 Definition - the ability of an atom in a molecule to attract electrons to itself

Trends

- Period increases across the period. The metals tend to give electrons away rather than attract them.
- Group Trend- decreases or stays about the same

Noble gases aren't electronegative
F is the most electronegative element.

Humor: On the Fun Side

"What elements think of each other, a conversation between elements."

