Classifying Chemical Reactions

Chapter 9

Chemical Reaction

- A process in which the physical and chemical properties of the original substances change as new substances with different physical and chemical properties are formed.
- Reactant(s) starting substance(s)
- Product(s) ending substance(s)

Reasons for chemical reactions:

- atoms can obtain a complete set of valence electrons (by losing, gaining, or sharing)
- atoms can become more stable

М

Evidence of a Chemical Reaction:

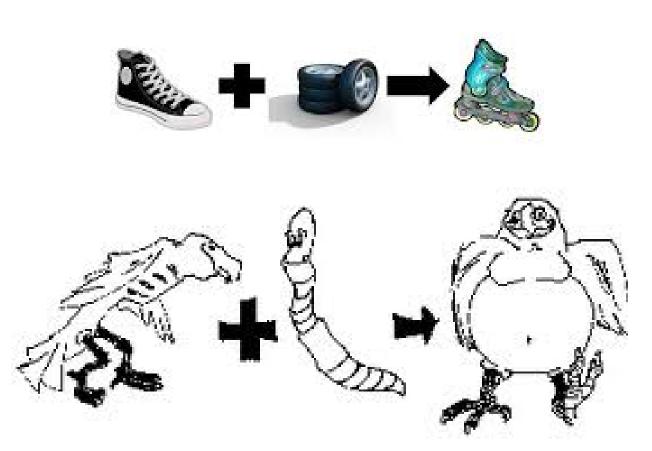
- Precipitate solid that falls out of a liquid
- Bubbles (gas formed)
- production of heat/light...ENERGY
- color change

Chemical Equation

- shorthand way to represent a chemical reaction
- word equation uses words (names)
 of reactants and products
- Formula equation uses symbols and formulas for reactants and products.

м

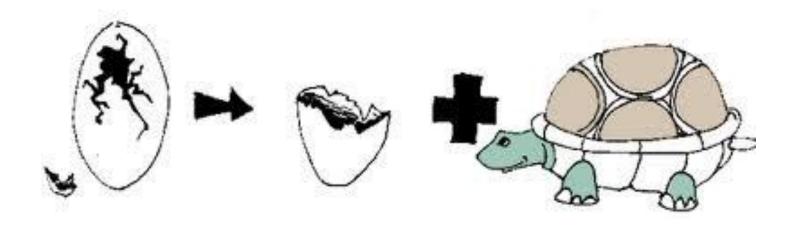
Writing Chemical Equations:


- put reactants on left side
- put products on right side
- "→" means yields or produces
- Must use the correct formulas and/or symbols
- Diatomic molecules H, O, N, Cl, Br, I and F (BOFINCH)
- states of matter (s), (l), (g) or (aq)
- balance equation. Use coefficients to follow the Law of Conservation of Matter.

To Balance an Equation:

- Write correct symbols and formulas for reactants and products
- count the # of atoms on both sides of the equation (separately)
- balance using coefficients (lowest ratio)
- recount the # of atoms as a check.
- Hint: begin with the element which appears only once on each side.

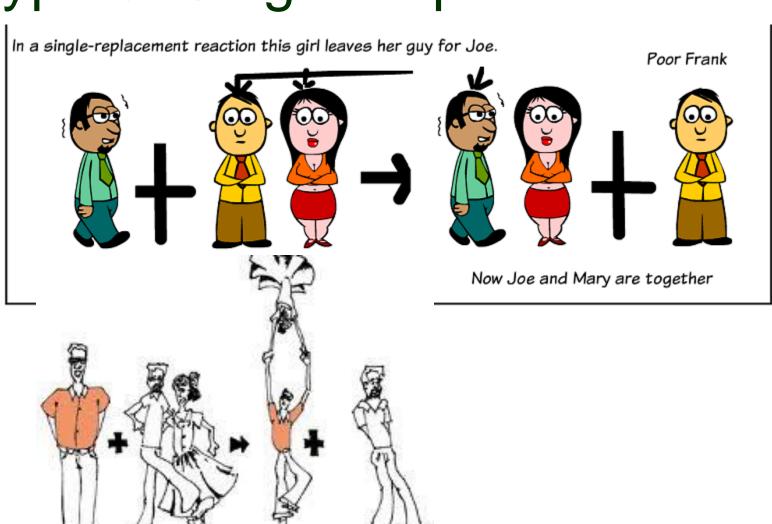
Type 1: Direct Combination or Synthesis


۲

Type 1: Direct Combination or Synthesis

- 2 or more lone elements or compounds combine to form one compound.
- $A + B \rightarrow AB$
- $S + O_2 \rightarrow SO_2$
- $\bullet \quad 4 \text{ Fe } + 3 \text{ O}_2 \rightarrow 2 \text{ Fe}_2 \text{O}_3$
- Na₂O + H₂O \rightarrow 2 NaOH

Type 2: Decomposition


٧

Type 2: Decomposition

- Single compound is broken down into 2 or more smaller compounds or elements.
- AB → A + B
- $CaCl_2 \rightarrow Ca + Cl_2$

Н

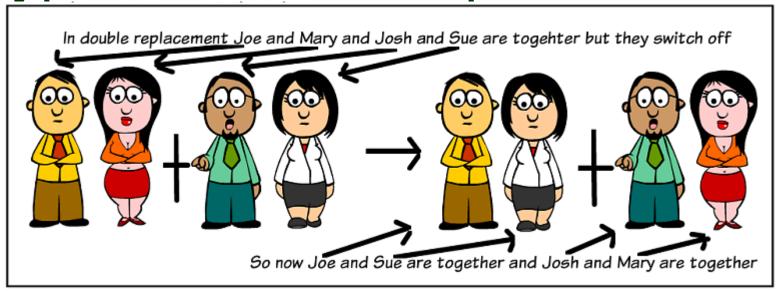
Type 3: Single Replacement

r.

Type 3: Single Replacement

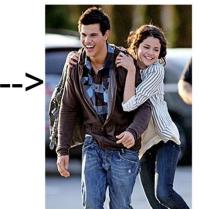
- An uncombined element displaces an element that is part of a compound. (activity series)
- Element + Compound → element + compound
- \blacksquare A + BC \rightarrow AC + B
- \blacksquare Cl₂ + 2 Kl \rightarrow 2 KCl + l₂

Type 3 continued


- Note: Metals replace metals, nonmetals replace nonmetals
- Note: In order to replace an element, the element must be more active than the one being replaced.

Activity Series

Metals	Decreasing Activity	Halogene
Metals lithium potassium calcium sodium magnesium aluminum zinc chromium iron nickel tin lead HYDROGEN*	Decreasing Activity	fluorine chlorine bromine iodine
copper mercury silver platinum gold		


 Atoms can only replace atoms lower than themselves on the activity series.

Type 4: Double Replacement

v

Type 4: Double Replacement

- Compound + Compound → compound + compound
- \blacksquare AB + CD \rightarrow AD + BC
- Factors for double replacement reactions:
- Most will only occur if reactants are in solution. Compounds separate into ions in solution.
- will likely proceed if: one of the products is a molecular compound

٧

Other Special Types of Reactions

- Complete Combustion of an Organic substance (C_xH_y or C_xH_yO_z)
 - □ Organic substance + $O_2 \rightarrow H_2O + CO_2$