STOICHIOMETRY

COOKIES \& CREAM COOKIE RECIPE

- 1 cup butter, softened
- 1/2 cup packed brown sugar
- 1/2 cup white sugar
- 1 package Cookies n‘ Cream pudding mix
- 2 eggs
- 1 tsp. vanilla
- 2 1/4 cups flour
- 1 tsp salt
- 1 tsp baking soda
- 10 Oreos, chopped
- 1/2 cup white chocolate chips

Combine flour, baking soda and salt in a small bowl.

Beat brown sugar, sugar vanilla, and butter in a large bowl. Add eggs one at time.
Gradually add pudding mix, flour, crushed cookies and morsels.

Bake cookies at 350° for 8 - 10 minutes

STOICHIOMETRY DEFINED

- Stoichiometry -The study of quantitative (measurable) relationships that exist in chemical formulas and chemical reactions.

ANALYSIS OF AN EQUATION

$\odot \mathrm{N}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

๑ Same as saying...

1mole $\mathrm{N}_{2} \mathrm{H}_{4}+2$ moles $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 1$ mole $\mathrm{N}_{2}+4$ moles $\mathrm{H}_{2} \mathrm{O}$

- The mole ratio is the "recipe" for the reaction.

MOLEロMOLE PROBLEMS

$\odot \mathrm{N}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

- Ex.1.4 moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ gives how many moles of N_{2} ?
1.4 moles $\mathrm{H}_{2} \mathrm{O}_{2} \times \frac{1 \text { mole } \mathrm{N}_{2}}{2 \text { mole } \mathrm{H}_{2} \mathrm{O}_{2}}=0.7$ moles N_{2}

ANOTHER EXAMPLE

$\odot 3 \mathrm{Zn}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2}$

- How many moles of $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ will be produced from 2.18 moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$?
2.18 moles $\mathrm{H}_{3} \mathrm{PO}_{4} \times \underset{\text { mole } \mathrm{H}_{3} \mathrm{PO}_{4}}{\underset{\text { moles }}{ } \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}}$

MASS = MASS PROBLEMS

๑Find molar mass of given and unknown

- Change mass of given to moles of given
- Change moles of given to moles unknown
- Change moles of unknown to mass of unknown

MASS=MASS PROBLEMS

- What mass of water is produced from 1.5 grams of glucose?

$$
\underline{\mathrm{C}}_{\underline{-}} \underline{H}_{12} \underline{\mathrm{O}}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+\underline{6 \mathrm{H}_{2} \underline{O}}
$$

- MM C $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=18.0 \mathrm{~g}$
- Change mass glucose to moles using molar mass.
- Use change from moles of glucose to moles of water.
- Change from moles of water to grams using molar mass

THE EXAMPLE OF MASS=MASS

$\underline{\mathrm{C}}_{6} \underline{\mathrm{H}_{12}} \underline{\mathrm{O}}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+\underline{6 \mathrm{H}_{2} \underline{\mathrm{O}}}$

$1.5 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times 1 \mathrm{~mol} \mathrm{C}_{6} \underline{H}_{12} \underline{\mathrm{O}}_{6} \times 6 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \underline{O} \times 18.0 \mathrm{~g} \mathrm{H}_{2} \underline{\mathrm{O}}=$ $180.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad 1 \mathrm{~mol} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} 1 \mathrm{~mol} \mathrm{H} 2 \mathrm{O}$

$\odot 0.9 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

ANOTHER EXAMPLE

\odot Ex. What mass of aluminum oxide is produced when 2.3 g of aluminum reacts with iron (III) oxide? (the reaction produces Fe metal and aluminum oxide)

$$
\odot 4.3 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}
$$

$\odot \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$
$2.3 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{27.0 \mathrm{~g} \mathrm{Al}} \times \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \underline{\mathrm{O}}_{3}}{1 \mathrm{~mol} \mathrm{Al}_{-}} \times \frac{102.0 \mathrm{~g} \mathrm{Al}_{2} \underline{\mathrm{O}}_{3}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}$

MASS=VOLUME PROBLEMS

- Find the molar mass of given
- Change mass of given to moles
- Use \bigcirc to change to moles of unknown
- Change moles to volume of gaseous unknown

ERAMPLE

- If I have 125 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$ how many L of O_{2} do I have @ STP using the following equation...

- MM of $\mathrm{Al}_{2} \mathrm{O}_{3}=102.0 \mathrm{~g}$
$125 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3} \times 1 \mathrm{~mol} \mathrm{Al}_{2} \underline{\mathrm{O}}_{3} \times 3 \mathrm{~mol} \mathrm{O}{ }_{2} \times \underline{22.4 \mathrm{~L}=41.2 \mathrm{~L} \mathrm{O}_{2}, ~}$ $102.0 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3} \quad 2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}=1 \mathrm{~mol} \mathrm{O}_{2}$

ANOTHER EXAMPLE

- Find the mass of aluminum required to produce 1.32 L of H_{2} gas @ STP in the following reaction...

$$
2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}
$$

- 1.06 g Al

VOLUME=VOLUME PROBLEMS

- Same as mole-mole just using volumes instead!
- If I have 15.5 L of N_{2} gas, how many L of H_{2} will react in this reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$?

PERCENT YIELD

- When chemicals combine, they are usually in non-stoichiometric proportions. (not the exact proportions that the equation shows). This means there will be a limiting reactant.
- Limiting Reactant will be completely used up in the reaction.
- The other, leftover amount is said to be in excess.
- The quantities of products formed in a reaction are always determined by the quantity of limiting reactant.

DETERMINING THE LR

- Solve 2 separate mass-mass problems (one for each reactant and BOTH to the same product).
- The mass-mass problem which is smaller amount of product is the limiting reactant.

© Ex. 3.5 g of Cu is added to 6.0 g silver nitrate. Find the limiting reactant.
- (Note: you can calculate the mass of either product, use the easier one to find the molar mass!)

$$
\underline{\mathrm{Cu}}+\underline{2 \mathrm{AgNO}_{3}} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\underline{\underline{2 \mathrm{Ag}}}
$$

$3.5 \mathrm{~g} \mathrm{Cu} \times 1 \mathrm{~mol} \mathrm{Cu} \times 2 \mathrm{~mol} \mathrm{Ag} \times 107.9 \mathrm{~g} \mathrm{Ag}=11.9 \mathrm{~g} \mathrm{Ag}$ $63.5 \mathrm{~g} \mathrm{Cu} \quad 1 \mathrm{molCu} 1 \mathrm{~mol}$ Ag
$6.0 \mathrm{~g} \mathrm{AgNO}_{3} \times 1 \mathrm{~mol} \mathrm{AgNO}_{3} \times \underline{2 \mathrm{~mol} \mathrm{Ag}} \times 107.9 \mathrm{~g} \mathrm{Ag}=3.81 \mathrm{~g} \mathrm{Ag}$ $169.9 \mathrm{~g} \mathrm{AgNO}_{3} 2 \mathrm{~mol} \mathrm{AgNO}_{3} 1 \mathrm{~mol} \mathrm{Ag}$

-Theoretical yield is the amount of product that should be able to be produced in a chemical reaction
oDetermined using STOICHIOMETRY!!!
©May also involve LR...which means you will determine two yields and then pick the smaller value as the correct one!

PERCENT YIELD
\odot Percent yield $=\binom{$ actual yield }{ theoretical yield }$\times 100$

- Actual yield = what you got in lab (or what is given in the problem)
- Theoretical yield = what it was supposed to be according to STOICHIOMETRY!
- A piece of copper with a mass of 5.00 g is placed in a solution of AgNO_{3}. The silver metal produced has a mass of 15.2 g . What is the percent yield for this reaction?
- Use stoich (mass-mass) to calculate the theoretical mass of the silver.
- Calculate the \%yield using the actual mass and the theoretical mass

EXAMPLE CONTINUED
 $\bigcirc \underline{\mathrm{Cu}}+2 \mathrm{AgNO}_{3} \rightarrow \underline{2 \mathrm{Ag}}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$

$\bigcirc M M C u=63.5 \mathrm{~g} \quad \mathrm{Ag}=107.9 \mathrm{~g}$
$5.00 \mathrm{~g} \mathrm{Cu} \times \frac{1 \mathrm{~mol} \mathrm{Cu}}{63.5 \mathrm{~g} \mathrm{Cu}} \times \frac{2 \mathrm{~mol} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{Cu}} \times \frac{107.9 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{Ag}}=17.0 \mathrm{~g}$
$\bigcirc \%$ yield $=15.2 \mathrm{~g}=89.4 \%$ 17.0 g

TRY THESE。。

- WS 11-3 \# 19
- Answer 106\% yield
- WS 11-3 \# 20
- Answer 88.3\% yield

